Towards an Open Science Commons

Yannick LEGRÉ
EGI.eu Managing Director

Slides credit: EGI Federation members
Outline

• EGI today
• Achievements
• Big shifts
• Towards 2020 and an Open Science Commons
EGI today

- Governance, the power of federating
Researchers from all disciplines have easy, integrated and open access to the advanced digital capabilities, resources and expertise needed to collaborate and to carry out compute/data intensive science and innovation.
Create and deliver open solutions for science and research infrastructures by federating digital capabilities, resources and expertise across communities and national boundaries.
EGI.eu and its participants - 2015

- 26 participants: 24 NGIs and 2 EIROs (CERN, EMBL-EBI)
 - Opening membership to research communities
 - Opening membership to non-European countries

- Affiliation programme
 - Lower barriers of entry to widening countries

Participants
CERN, EMBL-EBI, Belgium, Bulgaria, Croatia, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Israel, Italy, FYR of Macedonia, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Switzerland, Sweden, Turkey, UK

Under discussion
Armenia, Austria, Belarus, Denmark, Moldova, Norway, Russia, Ukraine
EGI Offer

- High-Throughput Data analysis
- Federated Cloud
- Federated Open Data Processing
- Federated Operations
- Community driven Innovation and Support
- Policy Advice
Science is inherently distributed

- Discoverability of services and knowledge
- Portability
 - data, applications, software
- Sharing and openness
- Common access policies, security
- One accounting infrastructure
- One support infrastructure
- Single sign on
- Federated service management
- Aggregation of demand and offer
Federating open science

Technology Providers

Technology (storage, data management, job scheduling and execution, workflow management, Auth and Authz, gateways ..)

Data Providers

Data (discovery, data management, repositories)

Research Communities

Community-specific tools

Service Providers

Services (Storage, HTC, Cloud)

Federation services

(service catalogue, AAI, training marketplace, virtual appliance library, accounting, support, policy and security)

All

Knowledge (training, education, technical support)

HPCS 2015 – Amsterdam
Federating e-infrastructures and data 1/2

- Distributed, federated storage, HTC and cloud facilities
- Virtual Research Environments
- >200 registered user research projects

- ~350 resource centres in 54 countries
- 550,000 logical CPU cores
- >290 PB disk, 180 PB tape
- >99.6% reliability
Federating e-infrastructures and data 1/2

- Distributed, federated storage, HTC and cloud facilities
- Virtual Research Environments
- > 200 registered user research projects
- ~350 resource centres in 54 countries
- 550,000 logical CPU cores
- >290 PB disk, 180 PB tape
- > 99.6% reliability
Federating e-infrastructures and data 2/2

EGI Council members
Integrated Infrastructures
Peer Infrastructures

More than 6,000 jobs/year to OSG
More than 68,000 jobs/year in IDGF
840 M CPU hours/year in Asia Pacific
EGI today

Achievements

- Operations
- Platforms
- User outreach
- Strategy and policy
Get infrastructure services

Resource allocation for national and international resources

• e-GRANT
 – Pooling of distributed infrastructure resources (HTC and cloud)
 – Matchmaking demand ↔ offer
 – Allocation
 – SLA negotiation (user community ↔ EGI.eu)

• Monitoring of service level targets
Development started in 2011
Production operations since May 2014
Currently:
- 21 providers from 14 NGIs
- 6,000 cores in total
- 700k VMs, 9M CPUh in last 12 months
Architecture of the EGI Federated Cloud

Endorsed VM images

Appliances Marketplace (AppDB)

Cloud Providers

Cloud Site (OpenStack)

Cloud Site (OpenNebula)

Cloud Site (Synnefo)

Operation services

Service registry

Information system

Accounting

Monitoring

AAI (VOs)

Uniform interfaces and behaviour

Manage instances

Share & endorse VM images (OVF)

Image replication

HPCS 2015 – Amsterdam
On demand **compute** to run any kind of workloads on virtual machines

Easy provisioning
- OCCI API across the whole infrastructure
- VMs start immediately
- Ruby and Java clients

Customize
- Select your OS
- *root* access
- Contextualization

Scale to your needs
- Select VM size (cores, RAM)
- Create and destroy VMs as needed
Automatic and secure distribution of endorsed VM images for Virtual Organisations

- Easy creation from AppDB
- Re-use and extend images

- Basic OS ready to use and contextualize
- Available on every site

- VO endorse images
- Automatically distributed to sites supporting the VO
Persistent Block Level Storage to attach to VMs

- Simple usage
 - Manage with OCCI and use as any other block device from VMs (i.e. POSIX)
 - Snapshotable

- High Performance
 - Consistent and low-latency performance
 - SSDs (in some sites)

- Scale to your needs
 - From GB to TB
 - Create and attach to VMs on demand
Data storage infrastructure for storing and retrieving data from anywhere at any time

- **API Access**
 - CDMI REST API for managing and accessing data

- **Sharing**
 - Define ACLs on each object, share publicly your data

- **Scale to your needs**
 - Store as much data as needed
 - Get accounted only for the space used
12 months of Federated Cloud activities

– 26 communities
 • Biological sciences
 • Physical sciences
 • Earth sciences

– 59 use cases currently supported, 5 from commercial organisations

– 700,000 VMs instantiated
Strategy, Policy, Business Development

- New **EGI strategy for 2020** in consultation with the EGI.eu Executive Board and the EGI Council
- The **Open Science Commons**
- Pay-for-Use pilot
 - 30 providers across 12 countries publishing pricing information (~10 ready/able to sell)
 - Emerging business models
 - Tools adapted (GOCDB, AppDB, e-GRANT), including GUI
 - **Final Report**
Impact

3,600 service endpoints, 47 UMD releases, 38,000 users

Increasing use of new disciplines
- 220 research projects, 76 new
- Astronomy and astroparticle Physics, Structural biology, Hydrology and climate, Medical and Health Sciences

Better services for the long tail
- 46% of the new users

Support to Research Infrastructures
- BBMRI, CTA
- Testing: EISCAT-3D, ELIXIR, ELI-NP, LifeWatch, LOFAR, KM3NeT

2,400+ Peer-reviewed papers, 620 new registered applications

Compendium of RI requirements

EGI case studies
The big shifts through EGI-Engage and sister projects

- AARC
- INDIGO Datacloud
- EDISON
- Technical support (ENVRI Plus, ELITRANS)
The big shifts

New governance to community engagement

The Distributed Competence Centre
Distributed Competence Centre (DCC)

- Promote reuse of solutions of common interest across research communities
- Evolve the EGI technical services with community requirements and provide a test environment with NGIs/EIROs → co-development
- Promote the integration of community services
 - Scientific applications
 - Joint training programme
 - Technical user support
EGI-Engage support to the DCC

- BBMRI
- DARIAH
- EISCAT-3D
- ELIXIR
- EPOS
- LifeWatch
- MoBRAIN/INSTRUCT
- Environment (disaster mitigation)
Outcomes

Community clouds
Data products
Active Repositories
GPU federations
Science gateways
Scalable applications
Advanced AAI
User support

Open Science

MoBRAIN/INSTRUCT
Environnement (disaster mitigation)
BBMRI
DARIAH
EISCAT-3D
ELIXIR
LifeWatch
EPOS

EGI community

Federated Cloud
High Throughput Computing
Security, access control
Data management and federation
Gateway systems

HPCS 2015 – Amsterdam
Actors – present and future

- Virtual Research Communities and supporting projects
- Research Infrastructures
- E-Infrastructures
- … Centres of Excellence
- … Technology providers
- …
Federate Knowledge in Europe
The big shifts

New governance to community engagement

The Distributed Competence Centre

Better services for the long tail

Centrally provided services for reduced access barriers
Services for the long tail of science

• Move towards a “zero (technical) barrier” e-infrastructure
 – Services dedicated to individual users or very small collaborations:
 • No certificate, no VO, full EGI experience

• User facing features
 – Log in using their federated identity
 – Provide the additional information not available in the IdP
 – Discover (marketplace) and submit a request for resources

• EGI/NGIs facing features:
 – Assign UIDs to users of the long tail of science platform
 – Approve user request
 – Monitor usage of resources
The big shifts

New governance to community engagement

The Distributed Competence Centre

Better services for the long tail

Centrally provided services for reduced barriers

New AAI

Service proxy/virtual IdP

Token translation

IdP for homeless users

HPCS 2015 – Amsterdam
• EGI users are directly/indirectly using x509 credentials to access the production services

• Objective: allow users to use their existing institutional credentials by
 – Replicating the current architecture to manage user communities in the other authentication technologies already used by the users
 – Integrating other federated identities into EGI services

• Testing and deployment of AAI services, and requirements analysis in close collaboration with the CCs and the other communities
 – Catch all IdP service (EGI sso), online CA, attribute authorities to manage users without X.509 certificate
 – Service proxy/Virtual IdP: technical service AND support to help communities to integrate easily their IdP with EGI. Integrating new IdP and attribute authorities in a one-step.

• Collaboration with AARC project
The big shifts

New governance to community engagement

The Distributed Competence Centre

Better services for the long tail

Centrally provided services for reduced barriers

New AAI

Service proxy/virtual IdP, token translation, IdP for homeless users

From IaaS to an open Data Cloud

PaaS and SaaS

Bring cloud next to big data
Federated Cloud + Open Data: Open Data Cloud

- Objective: scalable access to open research data for discovery, access and use
- Remove policy and technical barriers
 - Bring cloud service next to distributed data repositories
 - Replicate open research data of research/commercial relevance
 - Discovery, accounting
 - Provide PaaS and SaaS and evolve the federation services
 - Virtual appliance library of community tools and data for
 - Repeatability of science, training and education (EDISON)
- Collaboration with EUDAT and INDICO-Datacloud
- Multiple stakeholders involved
The big shifts

New governance to community engagement

- The Distributed Competence Centre
- Better services for the long tail
- New AAI

Centrally provided services for reduced barriers

Service proxy/virtual IdP, token translation, IdP for homeless users

From IaaS to an open Data Cloud

PaaS and SaaS
Bring cloud next to big data

Business engagement

Data sharing policies and business models
Procurement
Policy and business

• Pay-for-use and cross-border procurement

• Facilitate collaboration with SMEs (focus on consumer side) via a model to be adopted and adapted for a wider number of NGIs/Resource Centres
 – Use cases from agriculture, fishery and marine sciences, biodiversity, earth science

• Explore with SMEs opportunities and threats around the Open Data and co-develop business models for their exploitation
 • Market analysis and user requirements
 • Data Sharing Policies and Legal Aspects
Incomplete national roadmaps for Research and e-Infrastructures
- E-Infrastructures and RIs should be components of the same research system

e-Infrastructure Commons not fully achieved yet
- Lack of e-Infrastructure capacity for multidisciplinary research and the long tail of science
- Different access policies for user groups in each access
- Incomplete technical interoperability, different access policies
- The “Commons” governance principle not widely adopted
- Non organized landscape of multiple service providers and research communities, lack of cross-border procurement/funding scheme that allows coordinated resource management across Europe (except for GEANT)

Lack of one ‘backbone’ of European ICT capabilities
Developing an Open Science Commons

• Defining Open Science

• Defining the Open Science Commons

• Developing an Open Science Commons
Open Science

Opening of the creation and dissemination of scholarly knowledge towards a multitude of stakeholders, from professional researchers to citizens

Openness
Participation
Collaboration
Sharing
Re-use

Greater social value

Source: http://goo.gl/uO9MK5
Defining Open Science: 5 Schools of Thoughts

<table>
<thead>
<tr>
<th>School of thought</th>
<th>Involved groups</th>
<th>Central assumption</th>
<th>Central Aim</th>
<th>Tools & Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Democratic</td>
<td>Scientists, politicians, citizens</td>
<td>The access to knowledge is unequally distributed</td>
<td>Making knowledge freely available for everyone</td>
<td>Open access, intellectual property rights, Open data, Open code</td>
</tr>
<tr>
<td>Public</td>
<td>Scientists & citizens</td>
<td>Science needs to be made accessible to the public</td>
<td>Making science accessible for citizens</td>
<td>Citizen Science, Science PR, Science Blogging</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Scientists & platform providers</td>
<td>Efficient research depends on the available tools, applications and shared infrastructures</td>
<td>Creating openly available platforms, tools and services for scientists</td>
<td>Collaboration platforms, tools, computing platforms</td>
</tr>
<tr>
<td>Pragmatic</td>
<td>Scientists</td>
<td>Knowledge creation could be more efficient if scientists collaborated</td>
<td>Opening up the process of knowledge creation</td>
<td>Wisdom of the crowds, network effects, Open Data, Open Code</td>
</tr>
<tr>
<td>Measurement</td>
<td>Scientists & politicians</td>
<td>Scientific contributions today need alternative impact measurements</td>
<td>Developing an alternative metric system for scientific impact</td>
<td>Altmetrics, peer review, citation, impact factor</td>
</tr>
</tbody>
</table>

In red: S. Andreozzi additions

Open Science: a Complex Resource System

- **Shared resources**
 - Integrated, easy and fair access

- **Engaged communities**
 - Participating in the process
 - Culture of sharing
 - Collaborating in the management and stewardship

- **Governance**
 - Rules to access
 - Rules to resolve conflicts
 - Rules to balance quality vs. openness

- **Financial support**
 - For long-term availability
A common endeavor (EU perspective)

Research data

Digital services and applications

Instruments

Knowledge & Expertise

Innovation Centres

Centres of Excellence

HPCS 2015 – Amsterdam
Institutionalised community governance of the production and/or sharing of a particular type of resource (from natural to intellectual)
Open Science Commons: Definition

- A set of interrelated resource systems governed as commons that support the open creation and dissemination of scholarly knowledge
- An area of study in the commons theory applied to open science

website: www.opensciencecommons.org - paper: http://go.egi.eu/osc
Open Science Commons: When implemented...

Researchers from all disciplines have easy, integrated and open access to the advanced digital services, scientific instruments, data, knowledge and expertise they need to collaborate and achieve excellence in science, research and innovation.

They feel engaged in governing, managing and preserving these resources for everyone’s benefit, with the support of all stakeholders.
Key aspects in Open Science

<table>
<thead>
<tr>
<th>Principles of the Commons</th>
<th>What it means to the Open Science Commons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared community resources</td>
<td>Research data, scientific instruments, digital services, software, scientific publications, educational and training, expertise</td>
</tr>
<tr>
<td>Community-based rules and procedures with incentives for sharing and responsible use</td>
<td>Access modes are well defined and non-discriminatory (e.g. see charter for open access to RIs)</td>
</tr>
<tr>
<td>** Governance: the community is part**</td>
<td>Governance model with multiple stakeholders, it should include the users of the resources</td>
</tr>
<tr>
<td>Long-term, persistent care of resources</td>
<td>Long-term support of funding agencies for stability and sustainability Community committed to manage, preserve</td>
</tr>
</tbody>
</table>
Commoning in EGI

• Types of shared resources
 – Large-scale computing/storage/cloud IaaS-PaaS-SaaS/data services
 – Applications, tools, science gateways
 – Knowledge, expertise, training

• Rules
 – Various types of access modes
 – e.g., policy-based, excellence-driven, membership-based
 • Not yet fully harmonized across Member States

• Governance
 – Mainly service providers at the moment
 – Evolving to include research infrastructures
 – Advisory board for user communities

• Funding
 – National funding agencies, EC, service providers, user communities
Developing an OSC (1):
Governance structure and funding models

• Analyse governance structure of existing infrastructure/knowledge resource systems in open science
 – Identify best practices and patterns for commoning
 – Develop guidelines

• Define a multi-level governance – European and national – bringing together the different stakeholders including communities

• Identify funding models for sustainability and capacity building
Developing an OSC (2): Open Science Backbone

- The set of **standardised generic ICT capabilities** across countries and communities offering
 - Compute/Data intensive capabilities
 - Easy discovery, access, use and reuse of open data
 - Shared capacity for RIs and long tail

- Supporting **open standards** (both API and data formats)

- Complemented by community-specific and community-managed services
 - Research Infrastructures
Developing an OSC (2):
Shared Open Science Infrastructure Backbone

- Federated operations and support
 - Service desk
 - Monitoring and accounting
 - Capacity management
 - Service level management

- Core capabilities
 - Open Science Cloud (e.g., VM management, Data storage/access/discovery)
 - PID
 - Service registry and marketplace

- Multi-level governance with community participation
 - Local
 - National
 - European

- From Member States
 - Capacity dedicated to large RIs
 - Free pools for long tail researchers
 - Both publicly funded and commercial providers (all supporting open standards and no lock-in)

- Network of CSIRT
- Federated IdPs, Auth and Authz
- Management of different levels of assurance

- Research platform built on top of shared capabilities plus community owned resources
- Data products, tools, scientific gateways, virtual labs

- Common national pools of resources
Developing an OSC (3): Research data

• Stimulate the creation of public repositories of open research data

• Stimulate a culture of sharing and the right incentives to contribute and maintain

• Address legal and policy issues
 – Prefer minimal IPR or non-exclusive licensing
 – Many initiatives exist (e.g. RDA, CODATA)
Developing an OSC (4): European open knowledge hubs

A coordinated network of competence centers

• Offering knowledge and expertise for scientific software, applications, tools
 – Knowledge and expertise from a network of European training and education centres
 – Scientific software is open, documented, discoverable, supported
 – Support to access different capabilities (HTC, HPC, cloud, open research data, tools, applications, software…)

Open Knowledge Hub
How EC could contribute

- Fund a design study to develop guidelines and best practices on “commoning” resources (infrastructure, data, people) for science

- Coordinate with Member States to include e-Infrastructures into national roadmaps for contributing to an open science infrastructure backbone

- Stimulate the development of digital capabilities that are based on open standards and certified
 - Avoid proprietary enclosures
How Member States could contribute

- **Prioritise investment** to further develop and operate e-Infrastructures (as already done for ESFRI)
 - Contributing to the open science infrastructure backbone
 - Includes capacity building

- **Stimulate sharing** of infrastructure and knowledge resources

- **Develop various access policies for different research segments** including the long tail
 - Excellence drive, policy based, market based, …
How Research and e-Infrastructures could contribute

• Open by design
 – Open API, open formats, open licenses, open tools, …

• Strengthen collaboration via joint strategies, events, common roadmaps and working groups

• Design a governance according to the commons principles

• Ensure an healthy development of shared capabilities (e.g., open innovation processes)
How can EGI contribute?

Federate digital capabilities, resources and expertise

Operate services across the federated infrastructure

Co-create and integrate open and user-driven services and solutions

Be a trusted adviser on data and compute intensive science
Future steps

• Broaden the dialogue on OSC to more stakeholders

• Establish a framework of discussion that encourages participation and contribution

• Identify/analyse other key building blocks that need development
Conclusion

• Open Science
 – Needs a complex resource system of shared infrastructure and knowledge resources
 – Needs a ‘whole’ approach

• Open Science Commons
 – Developing a commons-oriented approach when designing systems
 – Ensuring maximization of return from public investment
 – Initial elements for Europe
 • An open science infrastructure backbone for network, computing and data
 • Stimulating research data as commons
 • Networks of knowledge hubs for skills development, innovation and expert support

https://www.opensciencecommons.org/getinvolved/
Thank you for your attention.

Questions?

http://cf2015.egi.eu

This work by Parties of the EGI-Engage Consortium is licensed under a Creative Commons Attribution 4.0 International License.