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Legal Disclaimers

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.Performance tests, such as SYSmarkand MobileMark, are 

measured using specific computer systems, components, software, operations and functions.Any change to any of those factors may cause the results to vary. You should consult 
other information and performance tests to assist you infully evaluating your contemplated purchases, including the performanceof that product when combined with other products.

• Relative performance is calculated by assigning a baseline value of 1.0 to one benchmark result, and then dividing the actualbenchmark result for the baseline platform into each of the 

specific benchmark results of each of the other platforms, and assigning them a relative performance number that correlates with the performance improvements reported. 

• Intel does not control or audit the design or implementation of third party benchmarks or Web sites referenced in this document. Intel encourages all of its customers to visit the 
referenced Web sites or others where similar performance benchmarks are reported and confirm whether the referenced benchmarks are accurate and reflect performance of systems 

available for purchase. 

• Intel® Hyper-Threading Technology Available on select Intel® Xeon® processors. Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer. Performance will vary 

depending on the specific hardware and software used. For more information including details on which processors support HT Technology, visit 

http://www.intel.com/info/hyperthreading. 

• Intel® Turbo Boost Technology requires a Platform with a processor with Intel Turbo Boost Technology capability.  Intel TurboBoost Technology performance varies depending on 

hardware, software and overall system configuration.  Check with your platform manufacturer on whether your system delivers Intel Turbo Boost Technology.  For more information, see 

http://www.intel.com/technology/turboboost

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor series, not across different processor sequences. See 

http://www.intel.com/products/processor_numberfor details. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear 
facility applications. All dates and products specified are for planning purposes only and are subject to change without notice

• Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel’s current plan of record product 

roadmaps. Product plans, dates, and specifications are preliminary and subject to change without notice

• Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon and Xeon logo , Xeon Phi and Xeon Phi logo are trademarks or registered trademarks of Intel Corporation 
or its subsidiaries in the United States and other countries. All dates and products specified are for planning purposes onlyand are subject to change without notice.

• *Other names and brands may be claimed as the property of others. 
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Optimization Notice
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Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize for instruction sets that are available in 
both Intel® and non-Intel microprocessors (for example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors.  In addition, 
certain compiler options for Intel compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.  For a 
detailed description of Intel compiler options, including the instruction sets and specific microprocessors they implicate, please refer to the Intel® Compiler 
User and Reference Guides under Compiler Options."  Many library routines that are part of Intel® compiler products are more highly optimized for Intel 
microprocessors than for other microprocessors.  While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and Intel-
compatible microprocessors, depending on the options you select, your code and other factors, you likely will get extra performance on Intel 
microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree for non-Intel microprocessors for 
optimizations that are not unique to Intel microprocessors.  These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming 
SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations.  Intel does not 
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent 
optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel® and non-Intel microprocessors, 
Intel recommends that you evaluate other compilers and libraries to determine which best meet your requirements.  We hope to win your business by 
striving to offer the best performance of any compiler or library; please let us know if you find we do not.

Notice revision #20101101
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Agenda

• Quick history!

• AVX feature discussion:

– AVX overview – vision and blueprint

– SW: Programming Models & Tools 

• Deep dive: AVX1/2/AVX512 ISA

• Getting Started with AVX512 

• Compiler and Tools

• Methodology and Framework

• Case Study - American Options using Barone-Adsi Whaley

• Summary
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Intel® Advanced Vector Extensions

Since 2001: 

128-bit Vectors

AVX 1.0: 2X flops: 256-bit wide floating-point vectors

Half-float support, Random Numbers

AVX2:  FMA (2x peak flops)

256-bit integer SIMD.  “Gather” Instructions.

Sandy Bridge

(32 nm Tock)
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2010 2011 2012 2013

Ivybridge

(22nm Tick)

Haswell

(22 nm Tock)

Knights Landing

Skylake

512- bit Vectors

32 registers

Masking, SwizzlesGoal:  8X peak FLOPs over 4 
generations

20??
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Intel®

Xeon®

processor

64-bit

Intel® Xeon®

processor 

5100 
series

Intel®

Xeon®

processor 

5500 
series

Intel®

Xeon®

processor 

5600 
series

Intel® Xeon®

processor 
code-named 

Sandy 
Bridge EP

Intel® Xeon®

processor 
code-named

Ivy Bridge 
EP 

Intel® Xeon®

processor 
code-named

Haswell
EP 

Intel® Xeon 
Processor 

codenamed 
Skylake

EP

Core(s) 1 2 4 6 8 12 18 28

Threads 2 2 8 12 16 24 36 56

SIMD Width 128 128 128 128 256 256 256 512

Intel® Xeon 
Phi™ 

coprocessor

Knights 
Corner

Intel® Xeon 
Phi™ processor 
& coprocessor

Knights 
Landing1

61 70+

244 280+

512 512

More cores   Ą More Threads   Ą Wider vectors

*Product specification for launched and shipped products available on ark.intel.com.        1. Not launched or in 
planning.

Challenges to Application Software 
- Parallelism

Intel® Xeon® and Intel® Xeon Phi™ Product Families are 
parallel
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http://software.intel.com/sites/default/files/319433-016.pdf
http://www.intel.com/info/hyperthreading
http://www.intel.com/technology/turboboost
http://www.intel.com/products/processor_number
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Consistent Developer Tools and 
Programming Models

Code Base

Many-core

Intel® Xeon Phi™

Coprocessor

Multicore

Intel® Xeon 

Processors
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Standards  Parallel Programming  Models  Vectorize, Parallelize, & Optimize

Xeon PhiXeon

No

Am I running 
an ISV

or in-house 
application?

Can my 
workload 

scale to over 
100 threads?

(see guide , page 11)

Can my 
workload 

benefit from 
large vectors?

(see guide , page 12)

Can my 
workload 

benefit from 
more memory 

bandwidth?

Contact ISV to 
find out if and 
when they will 
support Xeon 

Phi.

In-house No

Not ready

or suitable

No

ISV

Ready

Yes Yes

No

Am I capable 
& motivated 

to pursue 
high levels of 
parallelism?

Is my 
application 

ready for high 
parallelism? (see 

guide )

Yes

No

Yes Yes
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AVX SW Tools
Servers and clients compute, media and throughput workloads performance is critically 

dependent on vectorization and parallelization

Intel is leading the deployment of technologies to

• Increase the amount of vectorized code

• Help you identify bottlenecks in your application

• Target next generation CPU’s before having silicon

OpenCL is a registered trademark of Apple Computer, Inc.

New Capabilities
Languages Extensions

• Intel Cilk Plus

New Languages

• OpenCL:CPU in 2010, CPU+GPU in 2011.

New Libraries

• Intel® Media SDK – HW Acceleration

New Analysis Tools

• Intel® Architecture Code Analyzer

• Intel® Software Tuning Agent

• Intel® Software Development Emulator

Industry-Leading Tools
• Intel® C/C++ Compilers.  Industry 

leading V ector Programming

• Intel® Integrated Performance 
Primitives

• Intel® Math Kernel Library

• Intel® Thread Building Blocks

• Intel® VTune Analyzer and

• Intel® Advisor XE

http://whatif.intel.com
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Intel® AVX Technology
Haswell

512b AVX512

Server: 64SP / 32 DP  
Client:  32 SP / 16 DP  

Flops/Cycle (FMA)

256b AVX2

32 SP / 16 DP  
Flops/Cycle (FMA)

Future (in planning, 
subject to change)

Sandy Bridge

256b AVX1

16 SP / 8 DP
Flops/Cycle

AVX512

512-bit  FP/Integer

32 registers

8 mask registers

Embedded rounding 

Embedded broadcast

Scalar/SSE/AVX “promotions”

Native media additions

HPC additions

Transcendental support

Gather/Scatter

AVX AVX2

256-bit basic FP

16 registers

NDS (and AVX128)

Improved blend

MASKMOV

Implicit unaligned

Float16 (IVB 2012)

256-bit FP FMA

256-bit integer

PERMD

Gather

SNB-2011 HSW-2013 Future Processor (Knight 
Landing & Skylake Xeon)
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AVX512 big picture

• AVX512F
– ‘Foundation’ of architecture, required for any AVX512 implementation

– Many D/Q/SP/DP promotions from AVX2 with AAVX512 features

– Masking, 32 registers, embedded broadcast or rounding, 512-bit Vector Length

– New instructions added to accelerate HPC workloads

– Implementations add features to AVX512F “base”
– “base” will grow as MIC/Xeon converge on features

AVX512CD
Conflict Detect : instructions tailored for vectorizing loops with potential address 
conflicts

AVX512ER
Exponential and Reciprocal : 'wide' approximateion of Log (22 bits) and 
RCP/RSQRT (28 bits)

AVX512PF Prefetch : Multi-address prefetch instructions using gather/scatter semantics

AVX512DQ Additional D/Q/SP/DP instructions (converts, transcendental support, etc)

AVX512BW 512-bit Byte/Word support (promotions from AVX2, some additions)

AVX512VL Vector Length Orthogonality : ability to operate on sub-512 vector sizes 
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Xeon & Xeon PhiTM New ISA: What 
Is Where?

•Complex & versatile big cores

•Big focus on latency and single-thread

•State-of-the-art SIMD support for HPC and Enterprise

•Best balance of performance for any workload

•Small & efficient cores

•Big focus on throughput and many-threads

•State-of-the-art SIMD support for HPC

•Industry performance-per-watt leadership 

KNL
Xeon Phi

SSE*

AVX

AVX2

SKL
Xeon

SSE*

AVX

AVX2

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NHM

SSE*

KNL and SKL are the first 
“unification ” platforms:

AVX512 F is the common 
SIMD foundation for HPC 
software development

AVX512F AVX512F

AVX512CD AVX512CD

AVX512ER

AVX512PF

Pftchwt1

AVX512DQ

AVX512BW

AVX512VL
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AVX-512 features (I):  More & Bigger Registers

•AVX: VADDPS  YMM0, YMM3, [mem]
– Up to 16 AVX registers

– 8 in 32-bit mode

– 256-bit width
– 8 x FP32
– 4 x FP64

•AVX-512: VADDPS  ZMM0, ZMM24, [mem]
– Up to 32 AVX registers

– 8 in 32-bit mode

– 512-bit width
– 16 x FP32

– 8 x FP64

•But you need many more features
to use all that real estate effectively…

float32 A[N], B[N];

for(i=0; i<8; i++)
{

A[i] = A[i] + B[i];
}

float32 A[N], B[N];

for(i=0; i<16; i++)
{

A[i] = A[i] + B[i];    
}

http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
http://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
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AVX-512 Mask Registers

•8 Mask registers of size 64-bits
– k1-k7 can be used for predication 

– k0 can be used as a destination or source 
for mask manipulation operations

•4 different mask granularities.
For instance, at 512b:
– Packed Integer Byte use mask bits [63:0]

– VPADDB zmm1 {k1}, zmm2, zmm3

– Packed  Integer Word use mask bits [31:0]
– VPADDW zmm1 {k1}, zmm2, zmm3

– Packed IEEE FP32 and Integer Dword use 
mask bits [15:0]
– VADDPS zmm1 {k1}, zmm2, zmm3

– Packed IEEE FP64 and Integer Qword use 
mask bits [7:0]
– VADDPD zmm1 {k1}, zmm2, zmm3

a7 a6 a5 a4 a3 a2 a1 a0zmm1

b7 b6 b5 b4 b3 b2 b1 b0zmm2

zmm3

k1

b7+c7 a6 b5+c5b4+c4b3+c3b2+c2 a1 a0zmm1

+ + + + + + + +

1 0 1 1 1 1 0 0

c7 c6 c5 c4 c3 c2 c1 c0

128 256 512

Byte 16 32 64

Word 8 16 32

Dw ord/SP 4 8 16

Qw ord/DP 2 4 8

Vector Length

                         

element 

size                                   

VADDPD zmm1 {k 1}, zmm 2, zmm3
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Why Separate Mask Registers?

•Don’t waste away real vector registers for vector of 

booleans

•Separate control flow from data flow

•Operations on logical predicates consume less energy 

(separate functional unit)

– Kand, kor, kxor, kandnot…

– Kshift, kunpck…

•Tight encoding allows orthogonal operand

– Every instruction now has an extra mask operand
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AVX-512 Features (II):  Masking

•VADDPS  ZMM0 {k1}, ZMM3, [mem]

– Mask bits used to:

1. Suppress individual elements read 

from memory 

– hence not signaling any memory fault

2. Avoid actual independent operations 

within an instruction happening 

– and hence not signaling any FP fault

3. Avoid the individual destination 
elements being updated,

– or alternatively, force them to zero 

(zeroing)

for (I in vector length)
{

if ( no_masking or mask[I]) {
dest [I] = OP(src 2, src 3)

} else {
if ( zeroing_masking )

dest [I]  = 0
else

// dest [I] is preserved
}

}

Caveat: vector shuffles do no suppress memory fault

Exceptions as mask refers to “output” not to “input”
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Why True Masking?

•Memory fault suppression
– Vectorize code without touching

memory that the correspondent scalar 
code would not touch
– Typical examples are if-conditional 

statements or loop remainders

– AVX is forced to use VMASKMOV* (risc)

•MXCSR flag updates and fault handlers
– Avoid spurious floating-point exceptions 

without having to inject neutral data

•Zeroing/merging
– Use zeroing to avoid false dependencies 

in OOO architecture

– Use merging to avoid extra blends in if-
then-else clauses (predication) for great 
code density

float32 A[N], B[N], C[N];

for(i=0; i<16; i++)
{

if(B[i] != 0) {
A[i] = A[i] / B[i];    

else {
A[i] = A[i] / C[i];    

}
}

VMOVUPS zmm2, A

VCMPPS k1, zmm0, B

VDIVPS  zmm1 {k1}{z}, zmm2, B

KNOT k2, k1
VDIVPS  zmm1 {k2}, zmm2, C

VMOVUPS A, zmm1
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Embedded Broadcasts and Masking Support

•VFMADD231PS zmm1, zmm2, C {1to16}

– Scalars from memory are first class 
citizens

– Broadcast one scalar from memory into 
all vector elements before operation

– Memory fault suppression avoids 
fetching the scalar if no mask bit is set 
to 1

•Other “tuples” supported

– Memory only touched if at least one 
consumer lane needs the data

– For instance, when broadcast a tuple of 
4 elements, the semantics check for 
every element being really used

– E.g.: element 1 checks for mask bits 1, 5, 
9, 13, …

float32 A[N], B[N], C;

for(i=0; i<8; i++)
{

if(A[i]!=0.0)  
A[i] = A[i] + C* B[i];

}

VBROADCASTSS zmm1 {k1}, [rax]
VBROADCASTF64X2 zmm2 {k1}, [rax]

VBROADCASTF32X4 zmm3 {k1}, [rax]

VBROADCASTF32X8 zmm4, {k1}, [rax]

…
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AVX-512 Features: Embedded Rounding 
Control & SAE (Suppress All Exceptions)

•Embedded Rounding Control :
– MXCSR.RC can be overridden on all FP instructions

– VADDPS ZMM1 {k1}, ZMM2, [mem] {1Ą16} {rne-sae}

– “Suspend All Exceptions”
– Always implied by using embedded RC

– NO MXCSR updates / exception reporting for any lane

– Changes to RC without SAE via LDMXCSR
– Not needed for most common case (truncating FP convert to int)

•Only available for reg-reg mode and 512b operands

•Main application:
– Saving, modifying and restoring MXCSR is usually slow and cumbersome

– Being able to avoid suppressions and set the rounding-mode on a per instruction 
basis simplifies development of high performance math software sequences 
(math libs)
– E.g.: avoid spurious overflow/underflow reporting in intermediate computations
– E.g: make sure that RM=rne regardless of the contents of MXCSR
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AVX-512 Features: Compressed Displacement 

•VADDPS zmm1, zmm2, [rax+256]
– Observation is that displacement in generated vector code is a multiple 

of the actual operand size
– An obvious side effect of unrolling

– Unfortunately, regular IA 8-bit displacement format have limited scope 
for 512-bit vector sizes (unrolling look-ahead of +/-2 at most)
– So we would end up using 32-bit displacement formats too often

•AVX-512 disp8*N compressed displacement
– AVX-512 implicitly encodes a 8-bit displacement as a multiple of the 

actual size of the memory operand
– VADDPD zmm1 {k1}, zmm2, [rax]  memory size operand is 512bits

– VADDPD xmm1 {k1}, xmm2, [rax]  memory size operand is 128bits
– VADDPD zmm1 {k1}, xmm2, [rax] {1toN} memory size operand is 64 bits

– Assembler/compiler reverts to 32-bit displacement when the real 
displacement is not a multiple
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AVX-512 F: Common Xeon Phi (KNL) and Xeon 
(Future) Vector ISA Extension

AVX-512 Foundation is the common SIMD foundation 
for HPC software development
First on KNL
Planned on a future Xeon
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AVX-512 F Designed for HPC

Quadwordinteger 
arithmetic

Including 
gather/scatter 
with D/Qword 

indices

Math support

IEEE division and 
square root

DP transcendental 
primitives

New 
transcendental 

support 
instructions

New permutation 
primitives

Two source 
shuffles

Compress & 
Expand

Bit manipulation

Vector rotate

Universal ternary 
logical operation

New mask 
instructions

•Promotions of many AVX and AVX2 instructions to AVX-512

− 32-bit and 64-bit floating-point instructions from AVX

− Scalar and 512-bit

− 32-bit and 64-bit integer instructions from AVX2

•Many new instructions to speedup HPC workloads
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QuadwordInteger Arithmetic

Instruction Description

VPADDQ zmm1 {k1}, zmm2, zmm3 INT64 addition

VPSUBQ zmm1 {k1}, zmm2, zmm3 INT64 subtraction

VP{SRA,SRL,SLL}Q zmm1 {k1}, zmm2, imm8 INT64 shift (imm8)

VP{SRA,SRL,SLL}VQ zmm1 {k1}, zmm2, zmm3 INT64 shift (variable)

VP{MAX,MIN}Qzmm1 {k1}, zmm2, zmm3 INT64 max, min

VP{MAX,MIN}UQzmm1 {k1}, zmm2, zmm3 UINT64 max, min

VPABSQzmm1 {k1}, zmm2, zmm3 INT64 absolute value

VPMUL{DQ,UDQ}zmm1 {k1}, zmm2, zmm3 32x32 = 64 integer multiply

Long int and packed pointer manipulation
64-bit integer trending towards becoming a first class citizen
Removes the need for expensive SW emulation sequences

Note: VPMULQ and int64 < -> FP converts not in AVX -512 F
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Math Support

Instruction

VGETXEXP{PS,PD,SS,SD}

VGETMANT{PS,PD,SS,SD}

VRNDSCALE{PS,PD,SS,SD}   

VSCALEF {PS,PD,SS,SD}          

VFIXUPIMM{PS,PD,SS,SD}

VRCP14{PS,PD,SS,SD}               

VRSQRT14{PS,PD,SS,SD}       

VDIV{PS,PD,SS,SD}

VSQRT{PS,PD,SS,SD}

zmm1 {k1}, zmm2 Obtain exponent in FP format

zmm1 {k1}, zmm2 Obtain normalized mantissa

zmm1 {k1}, zmm2, imm8 Round to scaled integral number

zmm1 {k1}, zmm2, zmm3 X*2y , X <= getmant, Y <= getexp

zmm1, zmm2, zmm3, imm8 Patch output numbers based on inputs

zmm1 {k1}, zmm2 Approx. reciprocal() with rel. error 2-14

zmm1 {k1}, zmm2 Approx. rsqrt() with rel. error 2-14

zmm1 {k1}, zmm2, zmm3 IEEE division

zmm1 {k1}, zmm2 IEEE square root

30

Package to aid with Math library writing
• Good value upside in financial applications 
• Available in PS, PD, SS and SD data types
• Great in combination with embedded RC
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New 2-Source Shuffles

2-Src Shuffles
VSHUF{PS,PD}

VPUNPCK{H,L}{DQ,QDQ}

VUNPCK{H,L}{PS,PD}

VPERM{I,D}2{D,Q,PS,PD}

VSHUF{F,I}32X4

H’ G’ F’ E’ D’ C’ B’ A’ H G F E D C B A

zmm2 zmm3
15 0 10 11 2 2 0 9

zmm1

H’ A C’ D’ C C A B’zmm1

Long standing customer request
• 16/32-entry table lookup (transcendental support)

• AOS ė SOA support, matrix transpose
• Variable VALIGN emulation

10 9 8 7 6 5 4 3 2 1 0…
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Gather & Scatter

VMOVDQU64 zmm1, Q[rsi]

VMOVDQU64 zmm2, R[rsi]

VGATHERQQ  zmm0 {k2}, [rax+zmm1*8]

VSCATTERQQ [rax+zmm2*8] {k3}, zmm0 

D/Q/SP/DP element types
D/Q indices
Instruction can partially execute 

k-reg Mask used as completion mask

for(j=0, i=0; i<N; i++) 

{

B[Q[i]] = A[R[i]];

}

Q RA                                                                        B    

Current G/S implementation attempts to ‘max out’ existing DCU BW

Performance gains come from vectorizing REST of algorithm

Even this algorithm could get some gain (24 load dispatches Ą 10 per 8 elements) 26

Expand & Compress

VEXPANDPS  zmm0 {k2}, [rax] 

Moves compressed (consecutive) elements in register or memory to sparse 

elements in register (controlled by mask), with merging or zeroing

[rax]

YY7Y 4Y56 12Y3 0YYYzmm0

0010 1011 1101 1000k2 = 0x4DB1

0123456781415 …mem lsb

lsb

Allows vectorization of conditional loops
• Opposite operation (compress) in AVX512F

• Similar to FORTRAN pack/unpack intrinsics
• Provides mem fault suppression
• Faster than alternative gather/scatter

for(j=0, i=0; i<N; i++) 

{

if(C[i] != 0.0) 

{

B[i] = A[i] * C[j++];

}

}

27

Bit Manipulation

Instruction Description

KUNPCKBW k1, k2, k3 Interleave bytes in k2 and k3

KSHIFT{L,R}W k1, k2, imm8 Shift bits left/right using imm8

VPROR{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits right using imm8

VPROL{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits left using imm8

VPRORV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits right w/ variable ctrl

VPROLV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits left w/ variable ctrl

Basic bit manipulation operations on mask and vector operands
• Useful to manipulate mask registers

• Have uses in cryptography algorithms

28

VPTERNLOG –Ternary Logic Instruction

•Mimics a FPGA cell

– Take every bit of three sources to obtain a 3-bit index N

– Obtain Nth bit from imm8

Imm8[7:0]

Dest[i]

Src0[i]
Src1[i]

Src2[i]

Any arbitrary truth table of 3 values can be implemented

andor, andxor, vote, parity, bitwise-cmov, etc

each column in the right table corresponds to imm8

S1 S2  S3 ANDOR  VOTE (S1)?S3:S 2
0   0   0 0 0      0
0   0   1 1 0      1
0   1   0 0 0      0
0   1   1 1 1      1
1   0   0 0 0      0
1   0   1 1 1      0
1   1   0 1 1      1
1   1   1 1 1      1

VPTERNLOGD  zmm0 {k2}, zmm15, zmm3/[rax], imm8

29

AVX-512 CDI: Conflict Detection Instructions

30

Motivation for Conflict Detection

•Sparse computations are common in HPC, but hard to 

vectorize due to race conditions

•Consider the “histogram” problem:

index = vload &B[i ]                // Load 16 B[ i ]
old_val = vgather A, index         // Grab A[B[ i ]]
new_val = vadd old_val , +1.0       // Compute new values
vscatter A, index, new_val // Update A[B[ i ]]

for( i =0; i <16; i ++) { A[B[ i ]]++; }

•Code above is wrong if any values within B[i] are duplicated

−Only one update from the repeated index would be registered! 

•A solution to the problem would be to avoid executing the sequence gather-op-scatter with 

vector of indexes that contain conflicts
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Conflict Detection Instructions in AVX-512

•VPCONFLICT instruction detects elements 

with previous conflicts in a vector of indexes

– Allows to generate a mask with a subset of 

elements that are guaranteed to be conflict free

– The computation loop can be re-executed with 

the remaining elements until all the indexes 

have been operated upon

index = vload &B[i ]                              // Load 16 B[ i ]
pending_elem = 0xFFFF;                           // all still remaining
do {   

curr_elem = get_conflict_free_subset (index, pending_elem )
old_val = vgather { curr_elem } A, index       // Grab A[B[ i ]]
new_val = vadd old_val , +1.0                  // Compute new values
vscatter A { curr_elem }, index, new_val // Update A[B[ i ]]
pending_elem = pending_elem ^ curr_elem // remove done idx

} while ( pending_elem )

CDI instr.
VPCONFLICT{D,Q}  zmm1{k1}, zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

8

32

VPCONFLICT{D,Q}

•VPCONFLICT{D,Q} zmm1{k1}{z}, zmm2/B(mV)

•For every element in ZMM2, compare it against everybody and generate a 

mask identifying the matches (but ignoring elements to the ‘left’ of the 
current one –i.e. “newer”)

•Store every mask in every element destination in ZMM1

2 1 3 2 2 1 3 2 2 1 3 2 2 1 3 2zmm1

0001_1001_1001_1001

0000_0000_0001_1001

0000_0000_0100_0100

0000_0000_0000_0000

lsb

33

Optimized Algorithm

for each 16 scalar iterations {

indices = vload &index_array [ i ]

vpconflictd comparisons, indices

vplzcntd tmp_lzcnt , comparisons

vpsubd perm_idx , all_ 31s, tmp_lzcnt

temp_values = do_first_iteration (); // gather + compute

vptestmd to_do {k 0}, comparisons, all_ones // anything 
left?

while ( to_do ) {

vpbroadcastmd tmp, to_do

vptestnmd mask { to_do }, comparisons, tmp

vpermd tmp_values {mask}, perm_idx

tmp_values = do_work (mask); // just compute!

to_do ^= mask;

} while( to_do );

vscatter indices, A, tmp_values

}

Obtain recurrence
indices

Store
results Re-do conflicting

indices reusing 
results directly from

the vector

34

AVX-512 ERI & AVX-512 PRI: Xeon Phi Only

35

Xeon Phi Only Instructions

•Set of segment-specific instruction extensions 

– First appear on KNL

– Will be supported in all future Xeon Phi processors

– May or may not show up on a later Xeon processor

•Address two HPC customer requests

– Ability to maximize memory bandwidth

– Hardware prefetching is too restrictive

– Conventional software prefetching results in instructions overhead

– Competitive support for transcendental sequences

– Mostly division and square root

– Differentiating factor in HPC/TPT

36

KNL AVX512 additions

CPUID Instructions Description

A
V

X
-5

1
2

P
R

I PREFETCHWT1
Prefetch cache line into the L2 cache with 
intent to write (RFO ring request)

VGATHERPF{D,Q}{0,1}PS
Prefetch vector of D/Qword indexes into the
L1/L2 cache

VSCATTERPF{D,Q}{0,1}PS
Prefetch vector of D/Qword indexes into the
L1/L2 cache with intent to write

A
V

X
-5

1
2

E
R

I VEXP2{PS,PD}
Computes approximation of 2x with 
maximum relative error of 2-23

VRCP28{PS,PD}
Computes approximation of reciprocal with 
max relative error of 2-28

VRSQRT28{PS,PD}
Computes approximation of reciprocal 
square root with max relative error of 2-28
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KNL AVX512 additions

CPUID Instructions Motivation

A
V
X
-5

1
2
 P

R
I PREFETCHWT1

Reduce ring traffic in core-to-core data 
communication

VGATHERPF{D,Q}{0,1}PS
Reduce overhead of software prefetching:
dedicate side engine to prefetch sparse 
structures while devoting the main CPU to 
pure raw flopsVSCATTERPF{D,Q}{0,1}PS

A
V
X
-5

1
2
 E

R
I

VEXP2{PS,PD}
Speed-up key FSI workloads: Black-
Scholes, Montecarlo

VRCP28{PS,PD}
Key building block to speed up most 
transcendental sequences (in particular, 
division and square root):
Increasing precision from 14=>28 allows to 
reduce one complete Newton-Raphson
iteration

VRSQRT28{PS,PD}

38

Summary of AVX512 on KNL

•AVX-512 F: new 512-bit vector ISA extension

– Common between Xeon (SKL) and Xeon Phi (KNL)

•AVX-512 CDI Conflict detection instructions

– Improves autovectorization

– On Xeon Phi first

•AVX-512 ERI & PRI 

– 28-bit transcendentalsand new prefetch instructions

– On Xeon Phi only

39

Xeon (SKX) additions to AVX512F

40

AVX512DQ 

• Complete Qword support

– VPMULLQ packed 64x64 Č 64

– Packed/Scalar converts of signed/unsigned to SP/DP

– Arithmatic shift right

– Etc

• Extend mask architecture to word and byte 

– Byte masks are natural for packed Qword operands

• Minor additions to transcendental support

• Convert AVX512 mask ăĄ ‘SSE/AVX’ mask

• ‘aggregate datatype’ support

– Broadcast/insert/extract complex singles etc

41

AVX512DQ : additional HPC focus

New Instr

VBROADCAST{F32X8,F64X2,I32X8,I64X2}

VBROADCAST{I32X2}

VEXTRACT{F32X8,F64X2,I32X8,I64X2}

VINSERT{F32X8,F64X2,I32X8,I64X2}

VCVT{,T}{PS,PD}2{QQ,UQQ}

VCVT{QQ,UQQ}2{PS,PD}

VCVT{,T}{PS,PD}2{QQ,UQQ}

VFPCLASS{PS,PD}

VRANGE{PS,PD}

VREDUCE{PS,PD}

VPMULLQ

K{AND,ANDN,OR,XNOR,XOR,NOT}B

K{MOV,ORTEST,SHIFR,SHIFTL}B 

K{ADD,TEST}{B,W}

VPMOV{D2M,Q2M}, VPMOV{M2D,M2Q}

64

Tuple support: 32X8, 64X2, 32X2

Int64 ė FP conversions

Both unsigned and signed

Transcendental package v2

INT64 arithmetic support

Byte support for mask instructions

Expanded mask functionality

42

AVX512BW 

• Full support for Byte/Word operations

– MMX/SSE2/AVX2 re-promoted to AVX512 semantics

• Mask operations extended to 32/64 bits

– 32-bit mask refers to AVX512 ‘short’ operands

– 64-bit mask refers to AVX512 byte operands

• Loads/Stores/Broadcastsfor AVX512 semantics

• Permute architecture extended to words

– Vpermw, vpermi2w, vpermt2w

• New PSAD instruction,etc
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AVX512BW : Byte and Word Support

AV512BW

VPBROADCAST{B,W}

VPSRLDQ, VPSLLDQ

VP{SRL,SRA,SLL}{V}W

VPMOV{WB,SWB, USWB}

VPTESTM{B,W}

VPMADW

VPTESTNM{B,W}

VDBPSADBW

VPERMW, VPERM{I,T}2W

VMOVDQU{8,16}

VPBLENDM{B,W}

{KAND,KANDN}{D,Q}

{KOR,KXNOR,KXOR}{D,Q}

KNOT{D,Q}

KORTEST{D,Q}

AV512BW

KTEST{D,Q}

KSHIFT{L,R}{D,Q}

KUNPACK{WD,DQ}

KADD{D,Q}

VPMOV{B2M,W2M,M2B,M2W}

VPCMP{,EQ,GT}{B,W,UB,UW}

VP{ABS,AVG}{B,W}

VP{ADD,SUB}{,S,US}{B,W}

VPALIGNR

VP{EXTR,INSR}{B,W}

VPMADD{UBSW,WD}

VP{MAX,MIN}{S,U}{B,W}

VPMOV{SX,ZX}BW

VPMUL{HRS,H,L}W

VPSADBW

AV512BW

VPSHUFB, VPSHUF{H,L}W

VP{SRA,SRL,SLL}{,V}{W}

VPUNPCK{H,L}{BW,WD}

131

44

AVX512VL : Vector Length Orthogonality

• Allow AVX512 instructions to operate on sub-
vectors (lower 256/128 bits)

– Eases code generation for mixed data types

– Partial masks are functionally correct, why not use them?

– VL is in static in opcode, provides information EARLY in pipeline

– Clock gating of unneeded execution elements / buses

– Disabling RF read ports

– Preventing ‘false overlap/forwarding’ from being detected in memory

– Creating partial masks wastes instruction BW

• AVX512VL is NOT a “list of instructions”

– “orthogonal feature’ applying to “all” AVX512 instructions

– obvious caveats when instruction has implicit 256/512 width

* Not publically documented, name subject to change

45

AVX512VL : Down-promotions

VL orthogonality

V{ADD,MUL,SUB}{PS,PD}

VALIGN{D,Q}

VBLENDM{PS,PD}, VPBLENDM{D,Q}

VBROADCAST{SS,SD,F32X4,I32X4}

VCMP{SS,SD}

VCOMPRESS{PS,PD}, VPCOMPRESS{D,Q}

VCVT{DQ,UDQ}2{PS,PD}

VCVT{,T}{PS,PD}2{DQ,UDQ}

VCVT{PS2PD,PD2PS}

VCVT{PS2PH,PH2PS}

VDIV{PS,PD}

VEXPAND{PS,PD}, VPEXPAND{D,Q}

VEXTRACT{F32X4,I32X4}

V{MAX,MIN}{PS,PD}

Out of 450 AVX512 Instructions

VF{N}MADD{132,213,231}{PS,PD}

VF{N}MSUB{132,213,231}{PS,PD

VFMADDSUB{132,213,231}{PS,PD}

VFMSUBADD{132,213,231}{PS,PD}

VGATHER{D,Q}{PS,PD}

VPGATHER{D,Q}{D,Q}

V{MAX,MIN}{PS,PD}

VMOV{APS,UPS,DQA32,DQA64}

VMOV{DDUP,SHDUP,SLDUP} 

VMOVNT{DQ,DQA,PS,PD}

VP{ABS,ADD,SUB}{D,Q}

VP{AND,ANDN,OR,XOR}{D,Q}

VPCMP{,EG,GR}{D,Q,UD,UQ}

VPERM{D,Q,PS,PD}

318

VPERMIL{PS,PD}, VSHUF{PS,PD}

VP{MAX,MIN}{D,Q,UD,UQ}

VPMOX{SX,ZX}{B,W}{D,Q}

VPMOX{SX,ZX}DQ

VPMUL{DQ,UDQ,LD}

VP{SLL,SRL,SRA}{,V}{D,Q}

VPTESTM{D,Q}

VPUNPCK{H,L}{DQ,QDQ}

V{RCP,RSQRT}14{PS,PD}

VUNPCK{H,L}{PS,PD}

VPTERNLOG{D,Q}

VPMOVQ{,S,US}Q{QB,QW,QD,DB,DW}

VSHUF{F32X4,F64X2,I32X4,I64X2}

VPERM{T,I}2{D,Q,PS,PD}

Etc probably more than are shown

46

Summary of SKX AVX512 Additions

• More Qword support

– Packed converts, VPMULLQ etc

• Support for mixing AVX and AVX512 style masks 

– VPMOVM2*, VPMOV*2M

• All HLL datatypes at maximum SIMD width

– No need for upconvert

– # elements = VL / element_size

• VL aids mixing datatypes

– VL = # elements * element_size

• VL specifies memory access sizes exactly

– Masks provide this functionality ‘architecturally’ 

– Uarch optimized for ‘static’ knowledge

Getting Started with AVX512 –
Tools and Optimization 
Methodology

Support in Intel ®Compilers

Support starting in Intel ®Compilers 16.0

Á Later versions have more features/optimizations

Á http://software.intel.com/en -us/articles/intel -parallel -studio -xe/

Intel Skylake and Knights Landing Microarchitecture optimizations

Compiler options

Á -Q{a}x{CORE-AVX512, MIC-AVX512, COMMON-AVX512} on Windows * with Intel Compilers

Á -{a}x{CORE-AVX512, MIC-AVX512, COMMON-AVX512} on Linux* with Intel Compilers

Á -march=knl for gcc

Manual cpu dispatch

Áŕfuture_cpu_ 22Ŗ: For Knights Landing optimized code

Áŕfuture_cpu_ 23Ŗ: For Intel Skylake optimized code

Áŕfuture_cpu_ 30Ŗ: For the common AVX51 ISA

Intel® Advanced Vector Extensions 2 (Intel® AVX2) 

http://software.intel.com/en-us/articles/intel-parallel-studio-xe/
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Support in GCC and YASMCompilers

Support starting in NASM 2.11.08, binutils 2.25

Support starting in GCC 5.0:

ÁCompiler options: -mavx512f, -mavx512cd, -march=knl

ÁTo switch on all KNL NI: -march=knl

ÁAll AVX-512 NI are supported through intrinsics and inline assembly

ÁAutovectorization /autogeneration utilize some of AVX -512 NI

Other Intel Tools

Intel ®VTuneĻAmplifier 2016 Update 1 

Áhttp :// software.intel.com/en -us/intel -vtune-amplifier -xe/

Intel ®Math Kernel Library (Intel ®MKL) 11.2.1

Áhttp://software.intel.com/en -us/articles/intel -mkl/

Intel ®Integrated Performance Primitives (Intel ®IPP) 9.0

Áhttp://software.intel.com/en -us/articles/intel -ipp/

Intel ®Software Development Emulator 7.21

Áhttp://www.intel.com/software/sde

Comprehensive support for Intel Skylake and Knights 
Landing Microarchitecture and Intel ® AVX - 512 across a broad 

set of software development tools

Intel® Advanced Vector Extensions 2 (Intel® AVX2)

Optimization Tip: Compiler Optimization Report

51

é

LOOP INTERCHANGE in loops at line: 7 8 9

Loopnest permutation ( 1 2 3 ) -- > ( 2 3 1 )

é

Loop at line 8 blocked by 128

Loop at line 9 blocked by 128

Loop at line 10 blocked by 128

é

Loop at line 10 unrolled and jammed by 4

Loop at line 8 unrolled and jammed by 4

é

é(10)é  loop was not vectorized : not inner loop.

é(8)é   loop was not vectorized : not inner loop.

é(9)é   PERMUTED LOOP WAS VECTORIZED

é

% icc ïO3 ïopt - report - phase= hlo - opt - report - phase= hpo

Control the level of detail in the report generated:

Á /Qopt -report[ 0|1|2|3] (Windows*) 

Á -opt -report[ 0|1|2|3] (Linux*, MacOS* X) 

Select the places of interests:

Á /Qopt -report -phase[:phase] (Windows*)

Á -opt -report -phase[=phase] (Linux*, Mac OS* X)

Ý ipo_inl - Interprocedural Optimization Inlining Report

Ý ilo ÝIntermediate Language Scalar Optimization

Ý hpo ÝHigh Performance Optimization

Ý hlo ÝHigh-level Optimization

Ý all ÝAll optimizations (not recommended, 
output too verbose).

Save report output to file:

Á /Qopt -report -file:[file] (Windows*) 

Á -opt -report -file=[file] (Linux*, MacOS* X) 

Optimization Tip: Floating Point Operations

52

The Floating Point (FP) Model:  -fp-model (/ fp: ) 

ÁChoose the floating point semantics at coarse level

ÁSpecify the compiler rules for value safety, expression valuation 

Á -fp-model

Ý f ast [= 1] Allows value unsafe optimization

Ý f ast  = 2 Allows additional approximation

Ý precise Value safe optimization only

Ý source|double|extended imply ŕpreciseŖ unless overridden 
Intermediate result in expression evaluation

Ý strict precise + except + disable fma +
donœt assume default floating -point 

environment ,  output too verbose).

Denormalized Number and Flush-to-Zero

ÁExtends the lower range of IEEE Floating Point numbers 

ÁSkylake: moderate performance penalty; KNL: higher cost  

ÁUse FTZ, DAZ  if you create but donœt handle denormals

Ý Works for SSE/AVX/AVX2/AVX512; not available on X87

Optimization Tip: Floating Point Approximations

53

Reciprocal and Reciprocal of square root

Á On KNL,  RCP28PS, RSQRT28PS, RCP28PD, RSQRTPD give 24-bit SP, 28-bit DP

Á On Skylake and KNL, vrcp14ps, vrsqrt14ps, vrcp14pd. Vrsqrt14pd, Gives 14 -bit for SP and DP

Ý Haswell has only 11-bit SP, vrcpps, vrsqrtps! ĎĳœĲ Ġ ġĨĦ ĨĬįıĮĵĤĬĤĭĳ

Ý Compile generates 14 -bit versions, but 11 -bit version in single precision still exist via intrinsics

Á -no-prec-div and Ýno-prec-sqrt override the Ýfp-model settings

Ý Full divide is expensive and it is not pipelined x/y                x*(1.0/y) 

Base 2 Exponential Function

Á KNL implements vexp2ps vexp2pd. Both give 23 -bit accuracy

Á On Skylake, call Intel vectorized libm , svml_exp2ps_ep()

For Exponential Function of other bases, convert to Base 2 (not e not 10)

Á Base 2 always has performance advantage, because of table lookup implementation. 

Á For other bases, change the base to 2, using change of base formula.

Optimization Tip: AVX 512 vector Instruction Listing

54

Curious about AVX512 Instructions 

Á Use ÝS assembly listing options 

Á Name a listing file using -o filename

Curious about the AVX512 Instruction Compiler Generated?

Á Compiler knows sqrt () is used in denominator and then use rsqrt (x) instead of sqrt (x) 

Á Big core calls runtime library __svml_expf 16_ep, KNL use vexp2ps instruction

Big Core instructions using ÝxCORE_AVX512 Big Core instructions using ÝxCORE_AVX512

http://software.intel.com/en-us/intel-vtune-amplifier-xe/
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-ipp/
http://www.intel.com/software/sde
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Multi -node / Clustering

Message Passing

exploit multiple nodes

MPI, Platform LSF

Vectorization / SIMD
exploit AVX
#pragma SIMD

Multi -threading

exploit multiple cores

OpenMP, TBB

X4

Y4

Z4

X3

Y3

Z3

X2

Y2

Z2

X1

Y1

Z1

0

X8

Y8

Z8

X7

Y7

Z7

X6

Y6

Z6

X5

Y5

Z5
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What is Code Modernization

Re-architect and re -write code using multi - level 
parallelism to maximize the use of modern HW

Stepwise Optimization Framework

A collection of methodology and tools that enable the developers to 
express parallelism for Multicore and Manycore Computing  

Objective : Turning unoptimized program into a scalable, vector parallel 
application on multicore and many -core architecture

ωStep 1:  Leverage Optimized Tools, Library DonΩt Reinvent Wheels

ωStep 2: Scalar, Serial Optimization Avoid Redundancy

ωStep 3: Vectorization: Explore the Data locality Fill the SIMD Lanes

ωStep 4: Parallelization: Minimize thread creation/sync. overhead 

ωStep 5: Scale from Multicore to Many-core: Remove the huddles

Step 1: Leverage Optimized Tools, Library

Use Optimizing Compiler

Á Explore the optimization switches 

Á Feed the compiler with target information

Á Let compiler do majority of the work

Á Save Intrinsic for esoteric problems

Use Optimized Library  

Á Core Parallelism

Á BLAS, LAPACK, FFT

Á Video Audio Codec, DSP, etc

Objective: Minimize the amount of development work, avoid 
reinventing the wheel

Intel Parallel Studio XE 2015

Á Optimization switches accuracy selections

Á Support Current and future processor

Á Vector Programming - Pragma, Cilk+

Á Intrinsic and Vector extension

Use Optimized Library

Á OpenMP, Thread Building Blocks

Á Intel MKL library

Á Intel Performance Premitives

Step 2: Scalar, Serial Optimization

Two topics are most important in this stage

ÁAlgorithmic and Language C

ÁPrecision, Accuracy and Domain

59

Objective: Optimize core computation logic, numerical recipes. Understand the 

scaling potential of your application

Algorithmic Optimizations

Elevate constants out of the core loops  - avoid unnecessary redundancy

Á Compiler can do it, but it needs your cooperation

Á Group constants together

Avoid and replace expensive operations ÝReplace expensive operations with  cheaper ones

Á divide a constant can usually be replace by multiplying its reciprocal

Á Donœt call pow(a, b) when b is an small integer. 2, or 3 

Strength reduction in hot loop  -

Á Inductive approach is mathematically elegant, may computationally expensive

Á Iterative approach can strength -reduce the operation involved

60

const double dt = T / ( double )TIMESTEPS;

const double vDt = V * sqrt ( dt );

for ( int i = 0; i <= TIMESTEPS; i++){

double price = S * exp ( vDt * ( 2.0 * i - TIMESTEPS));

cell[i] = max(price - X, 0);

}

const double factor = exp ( vDt * 2);

double price = S * exp ( - vDt ( 2+TIMESTEPS));

for ( int i = 0; i <= TIMESTEPS; i++){

price = factor * price;

cell[i] = max(price - X, 0);

}

Inductive Method Iterative Method
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Understand C/C++ Type Conversion Rule

C/C++ implicit type conversion rule

Ádouble is higher in the type hierarchy than float in C/C++

ÁA variables promotes to double if it operates with another double.

Á0.5 *V*V will trigger a implicit conversion if V is a float 

Ádouble is at least 2X slower than float

ÁType convert is very expensive. It is 6 cycles inside VPU engine

Avoid using floating point literals, Always type your constants

ÁUse const float HALF = 0.5 f ;

Choose the right runtime functions API calls

Ásqrt (), exp (), log() requires double parameter

Ásqrtf (), expf (), logf () takes float parameter

61

Floating Point Hardware Resources

Use Vector Processing Unit for floating point arithmetic operations

ÁX87 is a legacy unit that also executes FP Instructions

ÁCompiler Ýfp-model strict select  x87 for FP operations

ÁVPU is preferred place because of SIMD parallelism and performance

Use X87 on restricted cases

ÁReproduce the same results 15 years ago, right or wrong

ÁGenerate FP exceptions for debugging purpose

62

FP Accuracy Mode and Domain Exclusion

Accuracy affects the performance of your program

ÁChoose the accuracy your problem requires

ÁHigher accuracy has higher cost

Set accuracy for libraries

ÁIntel MKL Accuracy Mode HA, LA, EP: API calls
vmlSetMode (VML_EP) ;

Set accuracy for compiler generated expressions

ÁIntel® Compiler: Compiler switches
ïfimf_precision =low,high,medium

- fimf_accuracy_bits =11

63

Understand the Domain of Your Problem

Not all application operate differently for certain class of FP inputs, yet still 
pay the price of detecting those value classes.

Exclude those FP value class can speed up calculations

ÁUse - fimf - domain - exclusion=< n1>

Á<n1> exclusive or of bit masks

Á15: common exclusions

Á31: avoid all corner case

ÁExclude zero, infinities, nan and Extreme value for
log, logf , /, sin
- fimf - domain - exclusion= 23:log,logf ,/, sin

64
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Step 3 Vector Programming

Vector intrinsics ( mm_add_ps, 

vaddps )

C++ Vector Classes 
(F32vec16, F64vec8)

Intel® Cilk PlusĻ Elemental 
function

Compiler -based 
Vector Programming

Array Notation:  Intel® CilkĻ 
Plus

• SIMD Parallelism Require data alignment

– Convert the input from AOS to SOA

– Memory declaration 
__attribute__((aligned( 64)) float a;

– Memory allocation _mm_malloc (size, align)

– TBB: scalable_aligned_malloc (size, align)

• Branch Breaks SIMD Execution

– Conditional logic has to be masked at a cost

– Functional calls can be hazardous

• Start Vector Programming with Compiler directives

– Provide hints on Alignment , Aliases, 

Data Dependency 

• Use Intel® Advisor XE 2016

Objective: Explore the Data locality, Fill up the Vector Lanes

Step 4: Parallelization

• Partition the work at high level

• Target Coarse granularity

• Manage thread creation overhead

• Minimize thread Synchronization

• Affinitize worker thread to processor threads

• Use Intel® Advisor XE 2016
pthreads *

OpenMP*

Intel® Cilk PlusĻ 

Intel® Threading Building Blocks

Objective: Keep all the cores and threads busy, asynchronously
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Step 5: Scale from Multicore to Manycore

Reduce the memory footprint to bare minimum

ÁUse registers and Caches wisely

ÁReduce function call overhead - Inlining

ÁRecalculate vs Going to memory gain

Improve Data Affinity

ÁMemory allocation from the worker threads 

Block the data for the size of cache/thread

ÁImprove Memory access efficiency

ÁAvoid cache thrashing

Objective: Scale the program to hundreds of threads, explore heterogeneity 

Case Study American Call Option Approximation

Algorithm Description
− Common analytical approach to option pricing

− Pricing American Call Option Using Approximation

− Efficient Analytic Approximation of American Option Values

Journal of Finance June 1989 by Giovanni Barone-Adesi, Robert E. Whaley

Description:
− Start with Black -Scholes PDE, Decomposes the American call into 

the European call + the early exercise premium C(S,T) = c(S,T) + Ůc(S, T)

− Fine the solution to the Non -linear equation using Newton -Raphson iteration

Ὓ Ὓ+ 

Original C/C++ Implementation: 
− http://finance.bi.no/~bernt/gcc_prog/algoritms_v 1/algoritms/node 24.html

Data generation
− S, X,T, b, are stream variables, ů, r are scalar constant

− Use C/C++ runtime random generator rand_r

− Measure the Performance measurement of the pricer only.

68

* Other names and brands may be claimed as the property of others. 

American Call Pricer
S       X       T      b       r     ů

American Call Option 

Code Modernization ÝMethodology & Process

Objectives
− Tracking various optimization methodology

− Identify the best known methods of achieving various step œs 
objectives

Optimization Methodology
ŊScalar, Serial optimization

ŊVectorization

ŊParallelization

* Other names and brands may be claimed as the property of others. 

ωStep 1:  Leverage Optimized Tools, Library DonΩt Reinvent Wheels

ωStep 2: Scalar, Serial Optimization Avoid Redundancy

ωStep 3: Vectorization: Explore the Data locality Fill the SIMD Lanes

ωStep 4: Parallelization: Minimize thread creation/sync. overhead 

ωStep 5: Scale from Multicore to Many-core: Remove the huddles

Code Modernization: 
Step 2: Scalar, Serial Optimization

Data type and algorithm Changes
− From double/float to float

Changes to avoid C/C++ auto conversion
− Constants are explicitly typed.

− Function call are also typed expf () instead of exp ()

Minimize function calls & function call 
overhead
− pow((nn-1), 2.0) 

− cnd()-> erf(), 

− All function are inlined ( __forcedinline ) 

Calculation of sub -expressions
− Calculate 1/q 2, 1/q 2_inf

Compiler Invocation line
− - xMIC_AVX512 - O3 - ipo - qopt - report= 5

- fimf - precision=low - fimf - domain - exclusion= 31

- no- prec - div - no- prec - sqrt

Performance Data was generated on Intel 
Haswell EP running at 14-core, 28-thread in 
dual socket
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Code Mordernization: Step 2 Scalar Serial 

Optimization

Code Modernization
Step 3: Vector Programming

Starting point

− From Step 2: Scalar, Serial optimized program 

Vector Programming using Pragma SIMD

− Add annotation to the scalar optimized routine

− Give scalar syntax a vector semantic

− Compiler generate the vector code

Performance Comparison

− #pragma SIMD leverage Scalar C/C++ syntax with higher productivity

− 2.72X better than Scalar Serial Optimized version

71

* Other names and brands may be claimed as the property of others. 

1

2.0720

2.722

0

0.5

1

1.5

2

2.5

3

Code Modernization: Step 3: Vector Programming 

Code Modernization
Step 4: Parallelization

Objective

− Create a user-level thread for each processor thread

Strategy

− Create threads early, Use OpenMP 4.0

− Allocate memory populate data from the worker thread

− Divide the workload into equal amount for each thread

− Each thread works on its own previously vectorized loop 

Methodology

− Use all available processor threads. 

− Set affinity mode scattered

− Each thread generate its own data

− Use parallel -section and for -section wisely

Performance Result

− 28 core, 56 threads

− 30X over single thread vectorized version

− 170X cumulative performance improvement
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#pragma omp parallel 

{

#ifdef _OPENMP

threadID = omp_get_thread_num ();

#else

threadID = 0; 

#endif

//Allocate memory here

unsigned int thread_seed = seed + threadID ;

for ( int i = OptPerThread - 1; i > - 1; i -- )

{

//populate the data for each thread

}

#pragma omp barrier

#pragma omp master

sTime = second();

#pragma vector nontemporal ( CallResult )

#pragma simd

#pragma vector aligned

for ( int opt = 0; opt < OptPerThread ; opt++)

{

float T = OptionYears [opt];

float S = StockPrice [opt];

float X = OptionStrike [opt];

float b = CostofCarry [opt];

float v = Volatility[opt];

CallResult [opt] = baw_scalaropt ( S,X,RISKFREE,b , v, 

T);

}

#pragma omp barrier

#pragma omp master

{

eTime = second();

}

}
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Code Modernization: Add Step 4 Parallelization
(log scale)

http://finance.bi.no/~bernt/gcc_prog/algoritms_v1/algoritms/node24.html
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Summary 

Converged vector ISA between Xeon and Xeon Phi

ÁAVX512F is an interesting common subset that covers most of HPC needs

Targeted additions that deliver high value on Xeon Phi 

ÁHigh precision transcendental instructions and advanced prefetch support

More Complete AVX512 ISA on Xeon 

ÁSupport for all data types and vector lengths

ÁAdditional HPC instructions 

Significant tools support for AVX 512 targeting both Xeon and Xeon Phi

ÁCompilers and library supports

ÁCode modernization can lead to significant performance gains from AVX 512 and other 
modern features


